Экология и безопасность жизнедеятельности стр.107

Экология и безопасность жизнедеятельности стр.107

Рассмотрим теперь общий случай прямоугольной матрицы

.

При любой допустимой стратегии игрока A: x1 ? 0, ...,хm ? 0, x1 +x2+…+xm=1 и любой допустимой стратегии игрока В: y1 ? 0, ...,ym ? 0, y1 +y2+…+ym=1 математическое ожидание выигрыша равно

                 (11.23)

Множество допустимых стратегий x = (x1,…,xn) игрока А обозначим через X, а множество допустимых стратегий у=(у1,...,yn) игрока В обозначим через Y.

Рассмотренные выше примеры являются частными случаями общих теорем [18] для игр с прямоугольными матрицами (прямоугольными играми); из них, в частности, вытекает:

1. Величины  существуют и равны между собой; при этом величина

                (11.24)

является ценой игры.

2. Всякая прямоугольная игра имеет цену; каждый игрок в прямоугольной игре всегда имеет оптимальную стратегию.

3. Пусть Е – математическое ожидание выигрыша в прямоугольной игре с матрицей С, имеющей цену v. Тогда для того, чтобы элемент х* =(х1*,...,х*m)I Х был оптимальной стратегией для игрока А, необходимо и достаточно, чтобы для всякого j =1, 2,...,n базисного вектора y(j) =   имело место неравенство

v ? E (x*, y(j)).                     (11.25),

Аналогично для того чтобы элемент у* =(y*1,...,y*n)IY был оптимальной стратегией для игрока В, необходимо и достаточно,  чтобы для  всякого элемента  базисного  вектора x(i) =   имело место неравенство

E (x(i), y*) ? v.                     (11.26)

Покажем теперь на двух примерах, как можно применить эти утверждения для вычисления цен и определения оптимальных стратегий для прямоугольных игр. В качестве таких примеров рассмотрим стратегии ловли на удочку и питания рыбы1.

1 Идея примера взята из книги Вильямса [8], которая также может служить хорошим введением в теорию игр.

 

Представим себе, что существование такого вида рыб, питающихся у поверхности воды, зависит от наличия трех видов летающих насекомых, которые обозначим через т1,т2 и m3 соответственно; насекомые появляются в зоне захвата с частотами 15п, 5п и п (т. е. насекомых т2 в 5 раз больше чем m3, а насекомых т1 в 3 раза больше чем т2).

Допустим, что рыбак В ловит рыбу А на насекомых одного из этих видов, насаживая их на крючок. Тогда матрица стратегий С ловли на удочку и питания рыб имеет следующий вид (табл. 11.1):

 

На основании изложенных утверждений достаточно найти неотрицательные числа х1,х2,х3, y1,y2,y3 и число, удовлетворяющее следующим условиям:

x1+x2+x3=l,        y1+y2+y3=1,                   (11.27)

v ? -2x1,             -2y1   ? v,

v ? -6x2,             -6у2   ?v,

v ? -30x3,         -30у3 ? v.

Заменим последние шесть неравенств на равенства. Тогда имеем

х1=у1= ,    x2=y2= x3=у3= .                       (11.28)

Подставляя эти значения в равенства (11.27), получим

v = .                (11.29)

.              (11.30)

                ( 11.31)

Таким образом, цена игры для рыбы будет отрицательной и равной . Она показывает, что в конце концов рыба будет поймана. При этом оптимальная стратегия рыбака совпадает со стратегией питания (также оптимальной) рыбы и оптимальная стратегия уменьшает вероятность поимки рыбы в каждом конкретном случае.


⇐ Предыдущая страница| |Следующая страница ⇒