Экология и безопасность жизнедеятельности стр.108

Экология и безопасность жизнедеятельности стр.108

Несколько усложним задачу. Предположим, что рыболов иногда использует приманку т4, которая может быть принята по ошибке за одно из трех насекомых, но которая вдвое чаще вызывает подозрение у рыб. Тогда матрица С стратегий ловли на удочку и питания рыб примет вид табл. 11.2:

 

Теперь достаточно найти неотрицательные числа х1,х2,х3, y1,y2,y3,y4 и число v, удовлетворяющие следующим условиям:

x1+x2+x3=l,                   y1+y2+y3+y4=1,              (11.27)

v ? -2x1,                            -y4 –2y1 ? v,

v ? -6x2,                          -3y4 – 6у2 ?v,

v ? -30x3,                      -15y4 – 30у3 ? v.

v ? -x1 –3x2 –15 x3

Левая система неравенства переопределена, а правая недоопределена (в левой неизвестных больше, чем неравенств, а в правой меньше). Заметим, что если последнее неравенство в правой колонке

-15y4 –30у3 ? v. будет выполнено при у3=0, то оно будет выполнено и при всех у3>0. Следовательно, полагая у3 = 0, правую систему неравенств можно заменить системой трех линейных уравнений

-y4 –2y1 = v,           -3y4 – 6у2 = v,             -15y4 – 30у3 = v

с тремя неизвестными y1, у2, у4. Ее решение, очевидно, имеет вид

Подставляя полученные выражения в равенство (11.32), где у3 =0, получим , т. е. цена игры для рыбы отрицательна и равна

,                  (11.33)

что несколько меньше, чем в предыдущем случае. Оптимальная стратегия рыбалки имеет вид

                        (11.34)

Изучим теперь оптимальную стратегию для рыбы, так как у3, = 0, то и x3 = 0, т. е. насекомые m3 слишком опасны для жизни. Тогда из системы четырех неравенств выпадают третье и четвертое, которое при x3 = 0 является следствием двух первых (их полусуммой). Таким образом, для определения x1, х2 и v имеем систему трех уравнений с тремя неизвестными

x1 + x2 + x3 = 1,   v = -2x1,   v = -6x2,

откуда

и, с учетом x3 = 0,

                  ( 11.35)

Значит, оптимальная стратегия для рыбы равна

                   ( 11.36)

цена же ее в силу (11.35) равна , т. е. совпадает с (11.34), что, вообще говоря, вытекает из общей теории.

Модели, основанные на теории игр, представляют собой интересный, но пока еще недостаточно изученный подход к решению стратегических экологических задач. Разработка теории для более сложных игр с ненулевой суммой и игр многих лиц, где между игроками могут создаваться коалиции, должна найти эффективное применение в экологических проектах, связанных с планированием и оценкой различных воздействий на окружающую среду.

 

Контрольные задания

 

1. Рассмотрим задачу об «оптимальном рационе» в случае трех продуктов питания (например, хлебные, молочные и мясные продукты) и трех полезных веществ (углеводы, белки, жиры). Ценовой вектор с = (с1, с2, c3) (руб.) примерно равен (10; 20; 50), а вектор b = (b1, b2, b3) минимально необходимого месячного потребления полезных веществ (кг) равен (1,2; 4; 1,5). Будем предполагать также, что матрица   имеет вид .

Решить задачу f1(x)= > min при ограничениях  Ах ? b, х ? 0.

2. При тех же ограничениях решить задачу f2(x) = х2 > max .


⇐ Предыдущая страница| |Следующая страница ⇒