Утилизация и вторичная переработка тары и упаковки из полимерных материалов стр.17

Для получения наполненных полимерных материалов из вторичного сырья можно использовать дисперсные и армирующие наполнители минерального и органического происхождения, а также наполнители, которые можно получать из полимерных отходов (измельчённые отходы реактопластов и резиновая крошка). Наполнению можно подвергать практически все отходы термопластов, а также смешанные отходы, которые для этой цели использовать предпочтительней и с экономической точки зрения.

Например, целесообразность применения лигнина связана с наличием в нём фенольных соединений, способствующих стабилизации ВПЭН при эксплуатации; слюды — с получением изделий, обладающих низкой ползучестью, повышенной тепло- и атмосферостойкостью, а также характеризующихся небольшим износом перерабатывающего оборудования и низкой стоимостью. Каолин, ракушечник, сланцевая зола, угольные сферы и железо применяются как дешёвые инертные наполнители.

При введении в ВПЭ мелкодисперсного фосфогипса, гранулированного в полиэтиленовом воске, получены композиции, имеющие повышенное удлинение при разрыве. Этот эффект можно объяснить пластифицирующим действием полиэтиленового воска. Так, прочность при разрыве ВПЭ, наполненного фосфогипсом, на 25% выше, чем у ВПЭ, а модуль упругости при растяжении больше на 250%.

Усиливающий эффект при введении во ВПЭ слюды связан с особенностями кристаллического строения наполнителя, высоким характеристическим отношением (отношением диаметра чешуйки к толщине), причём применение измельчённого, порошкообразного ВПЭ позволило сохранить строение чешуек при минимальном разрушении.

Композиции, содержащие лигнин, сланцы, каолин, сферы, отходы сапропеля, обладают сравнительно невысокими физико-механическими показателями, зато они являются наиболее дешёвыми и могут найти применение при производстве изделий строительного назначения.

1.3. ВТОРИЧНАЯ ПЕРЕРАБОТКА ПОЛИВИНИЛХЛОРИДА

В процессе переработки полимеры подвергаются воздействию высоких температур, сдвиговых напряжений и окислению, что приводит к изменению структуры материала, его технологических и эксплуатационных свойств. На изменение структуры материала решающее влияние оказывают термические и термоокислительные процессы.

ПВХ — один из наименее стабильных карбоцепных промышленных полимеров. Реакция деструкции ПВХ — дегидрохлорирование начинается уже при температурах выше 100°С, а при 160°С реакция протекает очень быстро. В результате термоокисления ПВХ происходят агрегативные и дезагрегативные процессы — сшивание и деструкция.

Деструкция ПВХ сопровождается изменением начальной окраски полимера из-за образования хромофорных группировок и существенным ухудшением физико-механических, диэлектрических и других эксплуатационных характеристик. В результате сшивания происходит превращение линейных макромолекул в разветвлённые и, в конечном счёте, в сшитые трёхмерные структуры; при этом значительно ухудшаются растворимость полимера и его способность к переработке. В случае пластифицированного ПВХ сшивание уменьшает совместимость пластификатора с полимером, увеличивает миграцию пластификатора и необратимо ухудшает эксплуатационные свойства материалов.


⇐ вернуться назад | | далее ⇒