Защита литосферы от отходов стр.89

Методы переработки изношенных шин с разрушением резиновой составляющей основаны на процессах сжигания, термического и каталитического крекинга, пиролиза, разложения резины под действием озона, кисло рода и других химических реагентов. Применение этих методов приводит к глубокой деструктуризации полимера, в большинстве случаев - к распаду молекулярной цепи. Получаемые продукты горения или разложения можно рассматривать как возможное сырье для органического и нефтехимического синтеза. Протекание таких процессов требует больших затрат энергии и наличия достаточно сложного оборудования. Поэтому для того, чтобы оправдать все затраты, ценность полученных в результате такой переработки продуктов должна быть очень высокой. Пока такие процессы не нашли широкого применения.

Чаще всего применяют методы переработки шин, обеспечивающие максимальное сохранение структуры химической составляющей, что позволяет осуществлять процессы регенерации резины и производство резиносодержащих изделий из восстановленной резины.

Традиционным при переработке шин является механический метод, основанный на измельчении на дробильных вальцах и последующем отсеве тонкой фракции резиновой крошки на виброситах. Однако, даже при оптимальных условиях, производительность дробильных вальцов недостаточна, а потребность в энергии больше, чем для других типов измельчителей. Более производительным является метод измельчения с применением роторных машин и дисковых мельниц. Производство по переработке шин механическим методом является экологически чистым, пыль твердых частиц и измельченного текстильного корда улавливается местной вентиляцией и осаждается в циклонах и рукавных фильтрах и может быть повторно использована.

Применение криогенных методов позволяет создать процесс с более полным отделением металлического и текстильного корда, и последующим размолом резины за две, три операции. В основе метода - предварительное «охрупчивание» резины при температуре жидкого азота с последующим ее измельчением. Криогенная технология обладает рядом преимуществ:

-    энергозатраты на измельчение "охрупченной" резины в 10 раз ниже энергозатрат на измельчение при положительных температурах;

-    имеется возможность получения резинового порошка любой дисперсности;

-    при получении порошков резины тонкого помола (10.50 мкм) резко снижается пожаро- и взрывоопасность. Однако при этом возникает другая проблема - большой расход хладагента (0,6 кг жидкого азота на 1 кг резины), что при всей экономичности метода в отношении потребления электроэнергии на механические стадии и сокращение числа операций дробления, делает этот процесс неэкономичным из-за высокой стоимости хладагента. Поэтому применение криогенной технологии становится экономи чески оправданным только в тех случаях, когда производство размещено вблизи металлургических и иных производств, где имеются цеха разделения воздуха и жидкий азот, не являющийся основной целью производства, сравнительно дешев.

В ряде стран, в том числе и России, для переработки изношенных покрышек применяют взрывные технологии. Так, на опытной установке металлокордные шины разрушались до кусков от 20 до 60 мм с минимальными затратами взрывчатых веществ. Такой продукт представляет большой интерес для шиноперераба-тывающих заводов. Самые большие энергозатраты на разрушение шины связаны с предварительным измельчением с получением кусков резины размерами до 50 мм. Взрывная технология позволяет получать и более мелкие куски резины (до 10.15 мм).


⇐ вернуться назад | | далее ⇒